On a Problem of N. Kirchoff and R. J. Nessel
 R. Getsadze*

Thilisi State University, Mech.-Math. Faculty,
I. Chavchavadze Avenue, I, 380028 Tbilisi, Republic of Georgia

Communicated by Paul L. Buter
Received April 30, 1993; accepted August 17. 1993

This paper is devoted to the solution of a problem of N. Kirchoff and R. J. Nessel on the existence of a function $f \in C_{2 \pi}$ such that

$$
\limsup _{n \rightarrow x} \frac{\left|F_{n} f(x)-f(x)\right|}{\left|T_{n} f(x)-f(x)\right|}=+\infty
$$

for almost all $x \in R$, where F_{n} is the trigonometric convolution operator and T_{n} is its discrete analogue, 1995 Academic Press. Inc.

Let $C_{2 \pi}$ be the Banach space of functions $f, 2 \pi$-periodic and continuous on the real axis R, endowed with the usual sup-norm $\|f\|_{c}:=\sup \{|f(u)|$: $u \in R\}$.

For an even polynomial kernel of degree $n, n \in N$ (set of natural numbers), given by

$$
\begin{equation*}
X_{n}(x):=\sum_{k=-n}^{n} \rho_{k, n} e^{i k x} \tag{1}
\end{equation*}
$$

with $\rho_{-k, n}=\rho_{k, n}, \rho_{0, n}=1$, and for $f \in C_{2 \pi}$ let the trigonometric convolution operator be defined by

$$
\begin{equation*}
F_{n} f(x):=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(u) X_{n}(x-u) d u \tag{2}
\end{equation*}
$$

and its discrete analogue by ($\left.u_{j, n}=2 \pi j / 2 n+1,0 \leqslant j \leqslant 2 n\right)$

$$
\begin{equation*}
T_{n} f(x):=\frac{1}{2 n+1} \cdot \sum_{j=0}^{2 n} f\left(u_{j, n}\right) X_{n}\left(x-u_{j, n}\right) \tag{3}
\end{equation*}
$$

* Current address: Professor R. Getsadze, Moscow State University. Sector b-1367. Vorobyovi govi, B-234, 117234 Moscow, Russia.

For $h_{k}(x):=e^{i k x}, k \in Z$ (set of integers), one has

$$
\begin{equation*}
F_{n} h_{k}(x)=\rho_{k, n} h_{k}(x)=T_{n} h_{k}(x) \quad(|k| \leqslant n) \tag{4}
\end{equation*}
$$

For the relations between operators F_{n} and T_{n} see $[3,4]$.
From the results of N. Kirchoff and R. J. Nessel (cf. [2, p. 35]) it follows that if

$$
\begin{equation*}
\left\|X_{n}\right\|_{1}:=\int_{0}^{2 \pi}\left|X_{n}(u)\right| d u=O(1) \quad(n \rightarrow \infty) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\rho_{l, n}=O_{j}\left(\frac{1}{n}\right) \quad(j \in N, n \rightarrow \infty) \tag{6}
\end{equation*}
$$

then there exists a counterexample $f_{0} \in C_{2 \pi}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|T_{n} f_{0}(x)-f_{0}(x)\right|}{\left|F_{n} f_{0}(x)-f_{0}(x)\right|}=+\infty \tag{7}
\end{equation*}
$$

for almost every $x \in R$.
In the proof of this result use is made of the following extension of Calderon's lemma (cf. [5, p. 165]).

Theorem (N. Kirchoff and R. J. Nessel [2, p. 30]). Let $H_{k}, D_{k} \subset R$ be (Lehesgue) measurable subsets such that H_{k} is 2π-periodic and D_{k} belongs to $[0,2 \pi]$ with Lebesgue measure $\mu\left(D_{k}\right) \neq 0$ for each $k \in N$. Suppose that

$$
\begin{equation*}
\left\|\prod_{k=1}^{n}\left(1-\frac{\mu\left(D_{k} \cap\left(H_{k}-t\right)\right.}{\mu\left(D_{k}\right)}\right)\right\|_{n 1}=o(1) \quad(n \rightarrow \infty) \tag{8}
\end{equation*}
$$

Then there exist points $y_{k} \in D_{k}$ such that $\lim \sup _{k \rightarrow \infty}\left(H_{k}-y_{k}\right):=$ $\cap_{n=1}^{x} \cup_{k=n}^{x}\left(H_{k}-y_{k}\right)$ is a set of full meastre.

In [2, p. 38] is posed the problem on the existence (under the conditions (5) and (6)) of a counterexample $f \in C_{2 \pi}$ such that

$$
\limsup _{n \rightarrow x} \frac{\left|F_{n} f(x)-f(x)\right|}{\left|T_{n} f(x)-f(x)\right|}=+\infty
$$

for almost every $x \in R$.
The present paper is devoted to the solution of this problem. Namely, we shall prove the following

Theorem. Let (5) and (6) hold. Then there exists a (real-valued) counterexample $f \in C_{2 \pi}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|F_{n} f(x)-f(x)\right|}{\left|T_{n} f(x)-f(x)\right|}=+\infty \tag{9}
\end{equation*}
$$

for almost every $x \in R$.
First we shall prove a number of lemmas.

Lemma 1. Let (5) and (6) hold. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|X_{n}\right\|_{n}=+\infty \tag{10}
\end{equation*}
$$

Proof. It is clear that (cf. (1))

$$
\left\|X_{n}\right\|_{2}^{2}:=\int_{0}^{2 \pi} X_{n}^{2}(u) d u=1+2 \sum_{k=1}^{n} \rho_{k . n}^{2}
$$

Then from (6) we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|X_{n}\right\|_{2}^{2}=+\infty \tag{11}
\end{equation*}
$$

But according to (5) we obtain

$$
\left\|X_{n}\right\|_{2}^{2} \leqslant\left\|X_{n}\right\|_{c} \cdot\left\|X_{n}\right\|_{1}=O\left(\left\|X_{n}\right\|_{c}\right)
$$

Now taking account of (11) we conclude that Lemma 1 is proved.
Lemma 2. Let (5) and (6) hold. Then for any $n \in N$ there exists a number $x \in[0,2 \pi)$ such that

$$
\begin{equation*}
\left(x, x+\frac{1}{2 n}\right) \subset[0,2 \pi) \tag{12}
\end{equation*}
$$

and for any $u \in(x, \alpha+1 / 2 n)$ one has

$$
\begin{equation*}
\left|X_{n}(u)\right|>\frac{1}{2}\left\|X_{n}\right\|_{n} . \tag{13}
\end{equation*}
$$

Proof. Let $x_{0} \in[0,2 \pi)$ be a point such that

$$
\begin{equation*}
\left|X_{n}\left(x_{0}\right)\right|=\left\|X_{n}\right\|_{c} . \tag{14}
\end{equation*}
$$

Without loss of generality we may assume that $X_{n}\left(x_{0}\right)>0$. According to the theorems of Lagrange and Bernstein, if $|h| \in(0,1 / 2 n)$, then there exists a number $\xi \in(0,|h|)$ such that

$$
\begin{aligned}
\left|X_{n}\left(x_{0}+h\right)-X_{n}\left(x_{0}\right)\right| & =\left|X_{n}^{1}(\xi)\right| \cdot|h| \leqslant\left\|X_{n}^{1}\right\|_{c} \cdot|h| \\
& \leqslant n\left\|X_{n}\right\|_{c} \cdot|h| \leqslant \frac{1}{2}\left\|X_{n}\right\|_{c} .
\end{aligned}
$$

Consequently, if $|h| \in(0,1 / 2 n)$, then (cf. (14))

$$
X_{n}\left(x_{0}+h\right) \geqslant X_{n}\left(x_{0}\right)-\frac{1}{2}\left\|X_{n}\right\|_{c}=\frac{1}{2}\left\|X_{n}\right\|_{c}
$$

It is obvious that either $x_{0}+1 / 2 n \in[0,2 \pi)$ or $x_{0}-1 / 2 n \in[0,2 \pi)$ and thus Lemma 2 is proved.

For convenience we shall use a notation

$$
\begin{equation*}
w(n):=\left\|X_{n}\right\|_{c}, \quad n=1,2, \ldots \tag{15}
\end{equation*}
$$

We introduce the sets $\left(n>n_{0}\right)$

$$
\begin{equation*}
E_{n}=\bigcup_{j=0}^{2 n}\left(\frac{2 \pi j}{2 n+1}+\frac{1}{2 n \sqrt{w(n)}}, \frac{2 \pi(j+1)}{2 n+1}\right) \tag{16}
\end{equation*}
$$

where $n_{0}>2$ is chosen such that (cf. (10), (15))

$$
\begin{equation*}
w(n)>(64 \pi)^{2} \quad\left(n>n_{0}\right) \tag{17}
\end{equation*}
$$

Lemma 3. Let (5) and (6) hold. Then for any $n \geqslant n_{0}$ there exist a realvalued trigonometric polynomial $P_{n}(x)$ and a set $A_{n} \subset[0,2 \pi]$ such that (cf. (2), (15), (16))

$$
\begin{align*}
\left\|P_{n}\right\|_{c} & \leqslant 2, \tag{18}\\
A_{n} & \subset E_{n} \tag{19}\\
\mu A_{n} & \geqslant \gamma_{1} \tag{20}\\
\left|F_{n} P_{n}(x)-P_{n}(x)\right| & \geqslant \frac{C_{1} \sqrt{w(n)}}{n} \quad\left(x \in A_{n}\right), \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\left|P_{n}(x)\right| \leqslant \frac{1}{n w(n)} \quad\left(x \in E_{n}\right) \tag{22}
\end{equation*}
$$

where n_{0}, C_{1}, and γ_{1} are positive constants.

Proof. Without loss of generality we may assume that the number α from Lemma 2 satisfies the condition

$$
\begin{equation*}
0<\alpha<\pi \tag{23}
\end{equation*}
$$

Let j_{0} be an integer such that

$$
\begin{equation*}
\frac{2 \pi\left(j_{0}-2\right)}{2 n+1}-\alpha \leqslant 0<\frac{2 \pi\left(j_{0}-1\right)}{2 n+1}-\alpha \tag{24}
\end{equation*}
$$

Taking account of (24) and (23) we obtain

$$
\begin{equation*}
1<j_{0}<n+3 \tag{25}
\end{equation*}
$$

We introduce the sets $(j=0,1, \ldots, 2 n)$

$$
\begin{align*}
B_{n}^{(j)} & :=\left(\frac{2 \pi j}{2 n+1}+\frac{1}{2 n \sqrt{w(n)}}-\alpha-\frac{1}{2 n}, \frac{2 \pi j}{2 n+1}-\alpha\right), \tag{26}\\
C_{n}^{(j)} & :=\left[\frac{2 \pi j}{2 n+1}, \frac{2 \pi j}{2 n+1}+\frac{1}{2 n \sqrt{w(n)}}\right) . \tag{27}
\end{align*}
$$

Let $f_{n}^{(j)}(x) \quad\left(j=j_{0}, \ldots, 2 n\right)$ be 2π-periodic function defined by the following equality (cf. (27))

$$
f_{n}^{(j)}(x)=\left\{\begin{array}{lll}
1 & \text { for } & x \in C_{n}^{(j)} \tag{28}\\
0 & \text { for } & x \in[0,2 \pi) \backslash C_{n}^{(j)}
\end{array}\right.
$$

It is easy to see that for $n>n_{0}$ we have (cf. (17), (24)-(28))

$$
\begin{align*}
\operatorname{supp} f_{n}^{(p)}(x) \cap \operatorname{supp} f_{n}^{(q)}(x) & =\varnothing & \text { for } j_{0} \leqslant p \neq q \leqslant 2 n, \tag{29}\\
B_{n}^{(p)} \cap B_{n}^{(q)} & =\phi & \text { for } j_{0} \leqslant p \neq q \leqslant 2 n, \tag{30}\\
B_{n}^{(j)} \subset[0,2 \pi) & & \text { for } j_{0} \leqslant j \leqslant 2 n, \tag{31}\\
C_{n}^{(j)} \subset[0,2 \pi) & & \text { for } j_{0} \leqslant j \leqslant 2 n . \tag{32}
\end{align*}
$$

Consider the set (cf. (26) and (24))

$$
\begin{equation*}
B_{n}:=\bigcup_{j=j_{1}}^{2 n} B_{n}^{(j)} \tag{33}
\end{equation*}
$$

Then from (33), (26), (30), (25), (17) we have $\left(n>n_{0}\right)$

$$
\begin{equation*}
\mu B_{n}=\left(2 n-j_{0}+1\right)\left(\frac{1}{2 n}-\frac{1}{2 n \sqrt{w(n)}}\right) \geqslant \frac{1}{4} . \tag{34}
\end{equation*}
$$

We shall show that if $x \in B_{n}^{\left(i_{0}\right)}$ for some $i_{0}, j_{0} \leqslant i_{0} \leqslant 2 n$, then

$$
\begin{equation*}
\left|F_{n} f_{n}^{\left(i_{0}\right)}(x)\right|>\frac{1}{8 \pi} \cdot \frac{\sqrt{w(n)}}{n} \tag{35}
\end{equation*}
$$

Indeed (cf. (2), (28)) we have

$$
\begin{equation*}
F_{n} f_{n}^{\left(i_{0}\right)}(x)=\frac{1}{2 \pi} \cdot \int_{\left.C_{n}^{i i_{n}}\right)} X_{n}(u-x) d u \tag{36}
\end{equation*}
$$

Further we note that when $u \in C_{n}^{\left(i_{10}\right)}$ and $x \in B_{n}^{\left(i_{0}\right)}$ (cf. (26), (27)), then

$$
\begin{equation*}
u-x \in(\alpha, \alpha+1 / 2 n) \tag{37}
\end{equation*}
$$

According to Lemma 2 (cf. (13), (15)) we have

$$
\begin{equation*}
\left|X_{n}(y)\right|>\frac{1}{2} w(n) \quad \text { for } \quad y \in(x, \alpha+1 / 2 n) \tag{38}
\end{equation*}
$$

and, consequently, the function $X_{n}(y)$ preserves its sign on the interval $(\alpha, \alpha+1 / 2 n)$ as a real, continuous function. This means that (cf. (36)-(38), (27))

$$
\begin{aligned}
\left|F_{n} f_{n}^{\left(i_{0}\right)}(x)\right| & =\frac{1}{2 \pi}\left|\int_{C_{n}^{\left(i_{0}\right)}} X_{n}(u-x) d u\right| \\
& >\frac{1}{2 \pi} \cdot \frac{1}{2} w(n) \cdot \mu C_{n}^{\left(i_{0}\right)} \\
& =\frac{1}{8 \pi} \cdot \frac{\sqrt{w(n)}}{n}
\end{aligned}
$$

Now (35) is proved.
We introduce the function (cf. (28), (24))

$$
\begin{equation*}
\Phi_{n}^{(n)}(x)=\sum_{j=j i j}^{2 n} r_{j}(t) f_{n}^{(j)}(x), \quad x \in[0,2 \pi), \quad t \in(0,1) \tag{39}
\end{equation*}
$$

where $\left\{r_{j}(t)\right\}_{j=j_{1}}^{2 n}$ are the Rademacher functions.
The following easily verifiable fact is well known (cf., for example, [1, p. 10]): Let $\sum_{j=1}^{m} a_{j} r_{j}(t)$ be an arbitrary polynomial in the Rademacher system and i_{0} be a fixed natural number, $1 \leqslant i_{0} \leqslant m$. Then

$$
\begin{equation*}
\mu\left\{t \in(0,1): a_{i 0} r_{i, j}(t) \cdot \sum_{j=1, j \neq i_{0}}^{m} a_{j} r_{j}(t) \geqslant 0\right\} \geqslant \frac{1}{2} \tag{40}
\end{equation*}
$$

Let (cf. (33), (39))

$$
\begin{equation*}
Q=\left\{(x, t) \in B_{n} \times(0,1):\left|F_{n} \Phi_{n}^{(1)}(x)\right|>\frac{1}{8 \pi} \cdot \frac{\sqrt{w(n)}}{n}\right\} \tag{41}
\end{equation*}
$$

Then according to (41), (33), (35), and (40), we conclude that for all $x \in B_{n}$ we have the inequality

$$
\int_{0}^{1} X_{Q}(x, t) d t \geqslant \frac{1}{2}
$$

where X_{Q} is the characteristic function of the set Q.
Therefore (cf. (34))

$$
\int_{B_{n}} \int_{0}^{1} X_{Q}(x, t) d t \geqslant \frac{1}{2} \cdot \mu B_{n} \geqslant \frac{1}{8} .
$$

Consequently, by Fubini's theorem there exists a number $t_{0} \in(0,1)$ such that

$$
\begin{equation*}
\int_{B_{n}} X_{Q}\left(x, t_{0}\right) d x \geqslant \frac{1}{8} . \tag{42}
\end{equation*}
$$

Relation (42) means that (cf. (41))

$$
\begin{equation*}
\mu\left\{x \in B_{n}:\left|F_{n} \Phi_{n}^{\left(t_{0}\right)}(x)\right|>\frac{1}{8 \pi}, \frac{\sqrt{\mu(n)}}{n}\right\} \geqslant \frac{1}{8} \tag{43}
\end{equation*}
$$

Let

$$
\begin{equation*}
A_{n}:=\left\{x \in B_{n}:\left|F_{n} \Phi_{n}^{\left(r_{1}\right)}(x)\right|>\frac{1}{8 \pi} \cdot \frac{\sqrt{w(n)}}{n}\right\} \bigcup_{j=0}^{2 n} C_{n}^{(n)} \tag{44}
\end{equation*}
$$

Then it is clear that (cf. (43), (44), (27), (17)) for $n>n_{0}$

$$
\begin{equation*}
\mu A_{n} \geqslant \frac{1}{8}-\sum_{j=0}^{2 n} \mu C_{n}^{(j)}=\frac{1}{8}-\frac{2 n+1}{2 n \sqrt{w(n)}} \geqslant \frac{1}{16} \tag{45}
\end{equation*}
$$

and (cf. (16))

$$
\begin{equation*}
A_{n} \subset E_{n} . \tag{46}
\end{equation*}
$$

According to (39), (16), (27), (28) we have

$$
\begin{equation*}
\Phi_{n}^{\left(f_{0}\right)}(x)=0 \quad\left(x \in E_{n}\right) \tag{47}
\end{equation*}
$$

and (cf. (44))

$$
\begin{equation*}
\left|F_{n} \Phi_{n}^{(n)}(x)\right|>\frac{1}{8 \pi} \cdot \frac{\sqrt{n(n)}}{n} \quad\left(x \in A_{n}\right) . \tag{48}
\end{equation*}
$$

Introduce the sets $\left(j=j_{0}, \ldots, 2 n\right)$

$$
\begin{align*}
& \Omega_{n}^{(j)}:=\left(\frac{2 \pi j}{2 n+1}+\mathscr{E}_{n}, \frac{2 \pi j}{2 n+1}+\frac{1}{2 n \sqrt{w(n)}}-\mathscr{E}_{n}\right), \tag{49}\\
& K_{n}^{(j)}:=\left[\frac{2 \pi j}{2 n+1}, \frac{2 \pi j}{2 n+1}+\mathscr{E}_{n}\right], \tag{50}\\
& Q_{n}^{(j)}:=\left[\frac{2 \pi j}{2 n+1}+\frac{1}{2 n \sqrt{w(n)}}-\mathscr{E}_{n}, \frac{2 \pi j}{2 n+1}+\frac{1}{2 n \sqrt{w(n)}}\right], \tag{51}\\
& R_{n}^{(j)}:=\left(\frac{2 \pi j}{2 n+1}+\frac{1}{2 n \sqrt{w(n)}}, \frac{2 \pi(j+1)}{2 n+1}\right), \tag{52}
\end{align*}
$$

where

$$
\begin{equation*}
\mathscr{E}_{n}:=\frac{1}{64 n^{2} \sqrt{w(n)}} \tag{53}
\end{equation*}
$$

Now we define the piecewise linear function $g_{n} \in C_{2 \pi}$ by the following equality (cf. (49)-(52))

$$
g_{n}(x):= \begin{cases}\Phi_{n}^{\left(r_{n}\right)}(x) & \text { for } \tag{54}\\ x \in \bigcup_{j=j_{n}}^{2 n} \Omega_{n}^{(j)}, \\ 0 & \text { for } x \in\left[0, \frac{2 \pi j_{0}}{2 n+1}\right] \cup\left(\bigcup_{i=j 0}^{2 n} R_{n}^{(j)}\right), \\ \text { linear } & \text { on } K_{n}^{(j)} \text { and } Q_{n}^{(j)} \quad\left(j=j_{0}, \ldots, 2 n\right) .\end{cases}
$$

It is obvious that (cf. (54), (28), (29), (39))

$$
\begin{equation*}
\left\|g_{n}\right\|_{c} \leqslant 1 \tag{55}
\end{equation*}
$$

and (cf. (2), (48), (25), (28), (39), (54), (50), (51), (53), (15)) for $x \in A_{a}$

$$
\begin{align*}
\left|F_{n} g_{n}(x)\right| & \geqslant\left|F_{n} \Phi_{n}^{\left(n_{n}\right)}(x)\right|-\left|F_{n}\left(\Phi_{n}^{\left(n_{n}\right)}(x)-g_{n}(x)\right)\right| \\
& \geqslant \frac{1}{8 \pi} \cdot \frac{\sqrt{w(n)}}{n}-\frac{1}{\pi} \cdot \int_{U_{j=10}^{2 n}\left(K_{n}^{(n)} \cup Q_{n}^{(n)}\right.}\left|X_{n}(x-u)\right| d u \\
& \geqslant \frac{1}{8 \pi} \cdot \frac{\sqrt{w(n)}}{n}-\frac{1}{\pi} w(n) \cdot 4 \mathscr{E}_{n} \cdot n \\
& \geqslant \frac{1}{16 \pi} \cdot \frac{\sqrt{w(n)}}{n} . \tag{56}
\end{align*}
$$

According to (54), (27), (16), and (49)-(51)

$$
\begin{equation*}
g_{n}(x)=0 \quad\left(x \in E_{n}\right) . \tag{57}
\end{equation*}
$$

Then we find a real-valued trigonometric polynomial $P_{n}(x)$ such that

$$
\begin{equation*}
\left\|g_{n}-P_{n}\right\|_{c} \leqslant \min \left(\frac{1}{n \cdot w(n)}, \frac{1}{16 n \sqrt{w(n)}}\right) . \tag{58}
\end{equation*}
$$

Taking account of (58), (55), (56), (15), (17), and (57) we obtain for $n>n_{0}$

$$
\begin{align*}
\left\|P_{n}\right\|_{c} & \leqslant 2, \tag{59}\\
\left|F_{n} P_{n}(x)\right| & >\frac{1}{32 \pi} \cdot \frac{\sqrt{w(n)}}{n} \quad\left(x \in A_{n}\right) \tag{60}\\
\left|P_{n}(x)\right| & \leqslant \frac{1}{n \cdot w(n)} \quad\left(x \in E_{n}\right) . \tag{61}
\end{align*}
$$

Consequently (cf. (17), (59)-(61), (45), (46), (18)-(22)), Lemma 3 is proved.

Now we begin with the proof of the theorem. By induction we define a sequence of natural numbers $\left\{n_{k}\right\}_{k=1}^{\infty}$ increasing at infinity. Let $n_{1}=n_{0}+1$, where n_{0} is the number appearing in Lemma 2.

Now let the numbers $n_{1}, n_{2}, \ldots, n_{k-1}$ be already defined. Consider the function (cf. (15))

$$
\begin{equation*}
x_{k}^{(1)}\left(x, y_{1}, \ldots, y_{k-1}\right)=\sum_{j=1}^{k-1} \frac{1}{\sqrt[4]{w\left(n_{j}\right)}} \cdot P_{n_{j}}\left(x+y_{j}\right) \tag{62}
\end{equation*}
$$

where $x \in R, y_{j} \in R, j=1,2, \ldots, k-1$, and $P_{n j}, j=1,2, \ldots, k-1$, are the polynomials appearing in Lemma 3.

For any fixed real numbers $y_{j}, j=1,2, \ldots, k-1$, for $x_{k}^{(1)}$ as for the function of x we have (cf. (2), (62))

$$
\begin{aligned}
\left\|F_{n} \alpha_{k}^{(1)}-\alpha_{k}^{(1)}\right\|_{c} & =\left\|\sum_{j=1}^{k-1} \frac{1}{\sqrt[4]{w\left(n_{j}\right)}} F_{n}\left(P_{n}\left(\cdot+y_{j}\right)\right)(x)-P_{n_{j}}\left(x+y_{j}\right)\right\|_{c} \\
& \leqslant \sum_{j=1}^{k-1} \frac{1}{\sqrt[4]{w\left(n_{j}\right)}} \cdot\left\|F_{n} P_{n_{j}}(x)-P_{n_{j}}(x)\right\|_{c} .
\end{aligned}
$$

Note that for any $j, j=1,2, \ldots, k-1$, the polynomial $P_{n_{i}}(x)$ may be written in the form

$$
P_{n_{j}}(x)=\sum_{m=-m_{j}}^{m_{i}} a_{m} e^{i m x} \quad(j=1,2, \ldots, k-1)
$$

Consequently, for $n>m_{j}$ (cf. (4), (6)), $j=1,2, \ldots, k-1$,

$$
\begin{aligned}
\left\|F_{n} P_{n_{j}}(x)-P_{n_{j}}(x)\right\|_{c} & =\left\|\sum_{\| m=-m_{j}}^{m_{j}} a_{m} \rho_{m, n} e^{i m x}-\sum_{m=-m_{j}}^{m_{j}} a_{m} e^{i m x}\right\|_{c} \\
& \leqslant \sum_{m=-m_{i}}^{m_{i}}\left|a_{m}\right| O_{m}\left(\frac{1}{n}\right)=O_{j}\left(\frac{1}{n}\right)
\end{aligned}
$$

From the last inequality we conclude that when $n>\max \left\{m_{j}, j=1,2, \ldots\right.$, $k-1\}$

$$
\begin{equation*}
\left\|F_{n} x_{k}^{(1)}-\alpha_{k}^{(1)}\right\|_{c} \leqslant \sum_{j=1}^{k-1} \frac{1}{\sqrt[4]{\omega\left(n_{j}\right)}} \cdot O_{j}\left(\frac{1}{n}\right) \leqslant \frac{M_{k}}{n} \tag{63}
\end{equation*}
$$

and (cf. (4)) analogously

$$
\begin{equation*}
\left\|T_{n} \alpha_{k}^{(1)}-\alpha_{k}^{(1)}\right\|_{c} \leqslant M_{k} / n \tag{64}
\end{equation*}
$$

for all $y_{j} \in R, j=1,2, \ldots, k-1$, where M_{k} is a positive constant independent of n and $y_{j}, j=1,2, \ldots, k-1$.

Now we define the index n_{k} with $n_{k}>n_{k-1}, n_{k}>\max \left\{m_{j}, j=1, \ldots\right.$, $k-1\}$ such that the inequalities (cf. (10), (15), (63))

$$
\begin{align*}
& \frac{1}{\omega\left(n_{k}\right)} \leqslant \frac{1}{16} \cdot \frac{1}{\omega\left(n_{k-1}\right)} \tag{65}\\
& \frac{1}{n_{k} \cdot \sqrt[4]{\omega\left(n_{k}\right)}} \leqslant \frac{1}{2} \cdot \frac{1}{n_{k-1} \cdot \sqrt[4]{\omega\left(n_{k-1}\right)}} \tag{66}\\
& \frac{M_{k}}{n_{k}} \leqslant \frac{\sqrt[4]{\omega\left(n_{k}\right)}}{k n_{k}}, \tag{67}\\
& \omega\left(n_{k-1}\right) \frac{4}{\sqrt[4]{\omega\left(n_{k}\right)}} \leqslant \frac{\sqrt[4]{\omega\left(n_{k-1}\right)}}{k \cdot n_{k-1}} \tag{68}\\
& \frac{4}{\sqrt[4]{\omega\left(n_{k}\right)}} \leqslant \frac{\sqrt[4]{\omega\left(n_{k-1}\right)}}{k \cdot n_{k-1}} \tag{69}
\end{align*}
$$

hold.

Thus we have obtained an infinite increasing sequence of indices $\left\{n_{k}\right\}_{k=1}^{x}$.

Now we use the theorem of N. Kirchoff and R. J. Nessel (cf. (8)). Instead of the set H_{k} we take 2π-periodic extension $A_{n_{k}}^{*}$ of the set $A_{n_{k}}$ from the Lemma 3 corresponding to the number n_{k}. As a set D_{k} we take the set

$$
\begin{equation*}
D_{k}:=\bigcup_{j=0}^{2 n_{k}}\left(\frac{2 \pi j}{2 n_{k}+1}+\frac{1}{2 n_{k} \cdot \sqrt{\omega\left(n_{k}\right)}}, \frac{2 \pi(j+1)}{2 n_{k}+1}-\frac{1}{2 n_{k} \sqrt{\omega\left(n_{k}\right)}}\right) . \tag{70}
\end{equation*}
$$

We see (cr. (70), (10), (15))

$$
\begin{aligned}
\mu D_{k} & =\left(2 n_{k}+1\right) \cdot\left(\frac{2 \pi}{2 n_{k}+1}-\frac{1}{n_{k} \sqrt{\omega\left(n_{k}\right)}}\right) \\
& =2 \pi-o(1) \quad(k \rightarrow \infty) .
\end{aligned}
$$

Consequently, for all $t \in(0,2 \pi)$ (cf. (20), (70))

$$
\sum_{k=1}^{x} \frac{\mu\left(D_{k} \cap\left(A_{n_{k}}^{*}-t\right)\right)}{\mu D_{k}} \geqslant \sum_{k=1}^{\infty} \frac{\gamma_{1}-o(1)}{2 \pi}=+\infty
$$

and thus, condition (8) holds. From the theorem of N. Kirchoff and R. J. Nessel we conclude that there exist points $y_{k}^{(0)} \in D_{k}, k=1,2, \ldots$, such that the set

$$
\begin{equation*}
A:=\limsup _{k \rightarrow x}\left(A_{n_{k}}^{*}-y_{k}^{(a)}\right) \tag{71}
\end{equation*}
$$

is a set of full measure.
We introduce the functions $(k=1,2, \ldots)$

$$
\begin{equation*}
\varphi_{k}(x):=P_{n_{k}}\left(x+y_{k}^{(0)}\right) \quad(x \in R) . \tag{72}
\end{equation*}
$$

Now we shall show that for all $k=1,2, \ldots$, and $j=0,1, \ldots, 2 n_{k}$ we have

$$
\begin{equation*}
\frac{2 \pi j}{2 n_{k}+1}+y_{k}^{(0)} \in E_{n_{k}}^{*}, \tag{73}
\end{equation*}
$$

where $E_{n k}^{*}$ is 2π-periodic extension of the set $E_{n_{k}}$ (cf. (16)).
Indeed, $y_{k}^{(0)} \in D_{k}$ means that $(\mathrm{cf} .(70))$ for some $j_{1}, 0 \leqslant j_{1} \leqslant 2 n_{k}$, one has

$$
\frac{1}{2 n_{k} \sqrt{n\left(n_{k}\right)}}+\frac{2 \pi j_{1}}{2 n_{k}+1}<y_{k}^{(0)}<\frac{2 \pi\left(j_{1}+1\right)}{2 n_{k}+1}-\frac{1}{2 n_{k} \sqrt{\omega\left(n_{k}\right)}} .
$$

Consequently,

Dividing the number $j+j_{1}$ by $2 n_{k}+1$ we obtain

$$
j+j_{1}=\left(2 n_{k}+1\right) q_{k}+r_{k} \quad\left(0 \leqslant r_{k} \leqslant 2 n_{k}\right),
$$

where q_{k} and r_{k} are nonnegative integers. Therefore

$$
\begin{aligned}
\frac{1}{2 n_{k} \sqrt{\omega\left(n_{k}\right)}}+2 \pi q_{k}+\frac{2 \pi r_{k}}{2 n_{k}+1} & <y_{k}^{(0)}+\frac{2 \pi j}{2 n_{k}+1} \\
& <2 \pi q_{k}+\frac{2 \pi\left(r_{k}+1\right)}{2 n_{k}+1}-\frac{1}{2 n_{k} \sqrt{\omega\left(n_{k}\right)}} .
\end{aligned}
$$

The last inequality means that (cf. (16))

$$
y_{k}^{(0)}+\frac{2 \pi j}{2 n_{k}+1} \in E_{n_{k}}+2 \pi q_{k} \subset E_{n_{k}}^{*} .
$$

Consequently (73) is proved.
From (73) it follows that (cf. (22), (72))

$$
\begin{equation*}
\left|\varphi_{k}\left(\frac{2 \pi j}{2 n_{k}+1}\right)\right| \leqslant \frac{1}{n_{k} \omega\left(n_{k}\right)}, \quad j=0,1, \ldots, 2 n_{k}, \quad k=1,2, \ldots \tag{74}
\end{equation*}
$$

Consider the functions (cf. (72))

$$
\begin{align*}
& f(x):=\sum_{j=1}^{\infty} \frac{1}{\sqrt[4]{\omega\left(n_{j}\right)}} \cdot \varphi_{j}(x) \tag{75}\\
& \gamma_{k}(x):=\sum_{j=k+1}^{\infty} \frac{1}{\sqrt[4]{\omega\left(n_{j}\right)}} \cdot \varphi_{j}(x) \tag{76}\\
& \alpha_{k}(x):=\sum_{j=1}^{k-1} \frac{1}{\sqrt[4]{\omega\left(n_{j}\right)}} \cdot \varphi_{j}(x) \tag{77}
\end{align*}
$$

It is clear that (cf. (75), (76), (18), (65), (72))

$$
\begin{align*}
& \|f\|_{c} \leqslant 2 \cdot \sum_{j=1}^{x} \frac{1}{\sqrt[4]{\omega\left(n_{j}\right)}}<+\infty \tag{78}\\
& \left\|\gamma_{k}\right\|_{c} \leqslant 4 \cdot \frac{1}{\sqrt[4]{\omega\left(n_{k+1}\right)}} \tag{79}
\end{align*}
$$

Let $x \in A$ (cf. (71)). Then for infinitely many indices k we have

$$
\begin{equation*}
x \in A_{n_{k}}^{*}-y_{k}^{(0)} \tag{80}
\end{equation*}
$$

Fix any such k. We have (cf. (80))

$$
\begin{equation*}
x=a_{k}+2 \pi \cdot l_{k}-y_{k}^{(0)} \quad\left(l_{k} \in Z, a_{k} \in A_{m_{k}}\right) \tag{81}
\end{equation*}
$$

Therefore (cf. (72), (2), (81))

$$
\begin{align*}
\left|F_{n_{k}} \varphi_{k}(x)-\varphi_{k}(x)\right| & =\left|F_{n_{k}} P_{n_{k}}\left(a_{k}\right)-P_{n_{k}}\left(a_{k}\right)\right| \\
& \geqslant \frac{C_{1} \sqrt{\omega\left(n_{k}\right)}}{n_{k}} . \tag{82}
\end{align*}
$$

According to (2), (75)-(77), (82), (67)-(69), (63), (62), (72), (17), (10), (15), and (79) we obtain

$$
\begin{align*}
\left|F_{n_{k}} f(x)-f(x)\right| \geqslant & \frac{1}{\sqrt[4]{\omega\left(n_{k}\right)}}\left|F_{n_{k}} \varphi_{k}(x)-\varphi_{k}(x)\right| \\
& -\left|F_{n_{k}} \alpha_{k}(x)-\alpha_{k}(x)\right|-\left|F_{n_{k}} \gamma_{k}(x)\right|-\left|\gamma_{k}(x)\right| \\
\geqslant & \frac{1}{\sqrt[4]{\omega\left(n_{k}\right)}} \cdot \frac{C_{1} \sqrt{\omega\left(n_{k}\right)}}{n_{k}}-\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{k \cdot n_{k}} \\
& -\left.\omega\left(n_{k}\right) \cdot\left|\gamma_{k}\right|\right|_{c}-\mid \gamma_{k} \|_{c} \\
\geqslant & \frac{C_{1} \sqrt[4]{\omega\left(n_{k}\right)}}{n_{k}}-\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{k \cdot n_{k}}-\omega\left(n_{k}\right) \cdot \frac{4}{\sqrt[4]{\omega\left(n_{k+1}\right)}}-\frac{4}{\sqrt[4]{\omega\left(n_{k+1}\right)}} \\
\geqslant & C_{1} \cdot \frac{\sqrt[4]{\omega\left(n_{k}\right)}}{n_{k}}-\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{k \cdot n_{k}}-\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{(k+1) \cdot n_{k}}-\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{(k+1) \cdot n_{k}} \\
= & \frac{\sqrt[4]{\omega\left(n_{k}\right)}}{n_{k}} \cdot\left(C_{1}-\frac{1}{k}-\frac{1}{k+1}-\frac{1}{k+1}\right) \\
= & \frac{\sqrt[4]{\omega\left(n_{k}\right)}}{n_{k}} \cdot\left(C_{1}-o(1)\right) \quad(k \rightarrow \alpha) . \tag{83}
\end{align*}
$$

From (1), (75)-(77), (3), (10), (15), (72), (63), (74), (72), (67), (81), (19), (22), (79), (68), and (69) one has

$$
\begin{align*}
&\left|T_{n_{k}} f(x)-f(x)\right| \leqslant \frac{1}{\sqrt[4]{\omega\left(n_{k}\right)}} \cdot\left(\left|T_{n_{k}} \varphi_{k}(x)\right|+\left|\varphi_{k}(x)\right|\right) \\
&+\left|T_{n_{k}} \alpha_{k}(x)-\alpha_{k}(x)\right|+\left|T_{n_{k}} \gamma_{k}(x)\right|+\left|\gamma_{k}(x)\right| \\
& \leqslant \frac{1}{\sqrt[4]{\omega\left(n_{k}\right)}} \cdot\left(\frac{\omega\left(n_{k}\right)}{2 n_{k}+1} \cdot \sum_{j=0}^{2 n_{k}}\left|\varphi_{k}\left(\frac{2 \pi j}{2 n_{k}+1}\right)\right|+\mid P_{n_{k}}\left(x+y_{k}^{(0)} \mid\right)\right. \\
&+\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{k \cdot n_{k}}+\omega\left(n_{k}\right) \cdot\left\|\gamma_{k}\right\|_{r}+\left\|\gamma_{k}\right\|_{c} \\
& \leqslant \frac{1}{\sqrt[4]{\omega\left(n_{k}\right)}} \cdot\left(\frac{1}{n_{k}}+\frac{1}{n_{k} \cdot \omega\left(n_{k}\right)}\right)+\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{k \cdot n_{k}} \\
&+\frac{\omega\left(n_{k}\right)}{\sqrt[4]{\omega\left(n_{k}+1\right)}}+\frac{4}{\sqrt[4]{\omega\left(n_{k}+1\right)}} \\
& \leqslant \frac{1}{n_{k} \cdot \sqrt[4]{\omega\left(n_{k}\right)}}+\frac{1}{n_{k} \omega\left(n_{k}\right) \cdot \sqrt[4]{\omega\left(n_{k}\right)}}+\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{k \cdot n_{k}} \\
&+\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{(k+1)}+\frac{\sqrt[4]{\omega\left(n_{k}\right)}}{(k+1) \cdot n_{k}} \\
&= \frac{\sqrt[4]{\omega\left(n_{k}\right)}}{n_{k}} \cdot\left(\frac{1}{\left.\sqrt[4]{\omega\left(n_{k}\right)}+\frac{1}{\omega\left(n_{k}\right) \cdot \sqrt[4]{\omega\left(n_{k}\right)}}+\frac{1}{k}+\frac{2}{k+1}\right)}\right. \\
&= \frac{\sqrt[4]{\omega\left(n_{k}\right)}}{n_{k}} \cdot o(1) \tag{84}\\
&(k \rightarrow \infty) .
\end{align*}
$$

Consequently (cf. (71), (78), (9), (83), and (84)) the theorem is proved.

References

1. A. M. Garsia, "Topics in almost Everywhere Convergence," Marcham, Chicago, 1970.
2. N. Kirchoff and R. J. Nessel, Divergence almost everywhere of a pointwise comparison of trigonometric convolution processes with their discrete analogous, J. Approx. Theory 70 , No. 1 (1992), 29-38.
3. S. M. Losinski, On an analogy between the summation of Fourier series and that of interpolation trigonometric polynomials, C. R. Acad. Sci. URSS (N.S.) 39, (1943), 83-87.
4. S. M. Losinski, On convergence and summability of Fourier series and interpolation processes. Mat. Sb. 14. No. 56 (1944), 175-268.
5. A, Zygmund. "Trigonometric Series," Vol. II, Cambridge Univ. Press, Cambridge, 1968.
