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This paper is devoted to the solution of a problem of N. Kirchoff and R. J. Nessel
on the existence of a function f e C,, such that

£, f1x) = fLx)]
17, /(x) = fx)]

lim sup

"oy

for almost all xe R, where F, is the trigonometric convolution operator and T, is
its discrete analogue.  «° 1995 Academic Press. Inc.

Let C,, be the Banach space of functions f, 2n-periodic and continuous
on the real axis R, endowed with the usual sup-norm || /.. := sup{|f(1)]:
ueRy}.

For an even polynomial kernel of degree n, ne N (set of natural num-
bers), given by

X)= Y prae™ (1

= -2

with p_ . =pr.» Pon=1, and for f e C,, let the trigonometric convolution
operator be defined by

p2r

1
F,,f(.\‘):=2—7;J0 Sflu) X, (x—u)du (2)

and its discrete analogue by (u;, =2nj/2n+ 1, 0 < j < 2n)

1 2n

> flug) X (x—u,,). (3)

j=0

L=
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410 R. GETSADZE
For A {x) :=¢*", ke Z (set of integers), one has
Fhidx)=p. hlx)=T,h(x) (lk] <n). (4)

For the relations between operators F, and 7, see [3,4].
From the results of N. Kirchoff and R. J. Nessel (cf. [2, p. 35]) it follows
that if

o2n

X0 =] Xl de=001)  (n—> o) (5)
0
and

1
l_p/.uzoj<;> (jEN,ﬂﬁOC), (6}

then there exists a counterexample f, € C,, such that

- I Tnf;](x) - .f()(»\‘)l
1 = o 7
U )~ Syl T 0

for almost every xe R.
In the proof of this result use is made of the following extension of
Calderon’s lemma (cf. [S, p. 165]).

THeEOREM (N. Kirchoff and R. J. Nessel [2, p. 30]). Let H,, D, <R be
( Lebesgue) measurable subsets such thar H, is 2n-periodic and D, belongs
to [0,2n]) with Lebesgue measure p(D,)#0 for each k€ N. Suppose that

o (D, (H, —
k=1 A il

Then there exist points y.e D, such that limsup, . (H,—y,):=
F ULl (H = yi) is a set of full measure.

In [2, p. 38] is posed the problem on the existence (under the conditions
{5) and (6)) of a counterexample f'e C,, such that
. ‘an(x) _f(Y)‘
lim sup ————————=+x
T, f 0 = 0]

for almost every xe R.
The present paper is devoted to the solution of this problem. Namely, we
shall prove the following



A PROBLEM OF KIRCHOFF AND NESSEL 411

THEOREM. Let (5) and (6) hold. Then there exists a (real-valued)
counterexample [ € C,, such that

1F, f(x) = f(x)]

lim sup ——————= (9)
n— 1p ITnf(x) ~f(’()l
for almost every x€ R.
First we shall prove a number of lemmas.
LemMma 1. Let (5) and (6) hold. Then
lim | X,[.=+oc. (10)
Proof. It is clear that (cf. (1))
X=X du=142 3 pi,.
4] k=1
Then from (6) we have
im {X,[5=+ . (11)

But according to (5) we obtain
”Xan g “Xn“1 anH] = 0( HXnHl)

Now taking account of {(11) we conclude that Lemma 1 is proved.

LEMMA 2. Let (5) and (6) hold. Then for any ne N there exists a number
ae [0, 2xm) such that

<a,a+§%>C[0,27z) (12)
and for any we{x, o+ 1/2n) one has
X, 0] > 51X (13)
Proof. Let x,€ [0, 2n) be a point such that
[X(Xo)l = [LX 0. (14)

640 R0 39
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Without loss of generality we may assume that X,(x,) > 0. According to
the theorems of Lagrange and Bernstein, if |4} € (0, 1/2n), then there exists
a number ¢ (0, |#]) such that

[X(Xo+ ) = X (xo)| = [ X (][RI <X A
<n Xl <3 IX,
Consequently, if |2 (0, 1/2x), then (cf. (14})
Xn(x() + h) 2 Xu(x()) - :7} “Xn“( = % “Xqu'

It is obvious that either x,+ 1/2ne[0, 27} or x,— /2ne [0, 2n) and
thus Lemma 2 s proved.

For convenience we shall use a notation

w(n) =X\, n=12 .. (15)

We introduce the sets (n>n,)

E - 2 ( 2nj N 1 ’27'[(j+1)> (16)
j—o\2n+1 2n \/w(n) 2n+1
where n,> 2 is chosen such that {cf. (10), (15))
win)> (64n)° (n>ny). (17)

LEMMA 3. Let (5) and (6) hold. Then for any n = n, there exist a real-
valued trigonometric polynomial P, (x) and a set A,<[0,2r] such that

(cf- (2), (15), (16))

[Pl.<2, (18)
A”C En\ (19)
;"An?}’l’ (20)

C, /w(n)
|F, P, (x)— P, (x)| 2——;—— {xed,), (21)

and
1
IP”(’X)l S————-— ('ern)s (22)
nw(n)

where ny, C,, and y, are positive constants.
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Proof.  Without loss of generality we may assume that the number «

from Lemma 2 satisfies the condition
O<a<m
Let j, be an integer such that

Taking account of (24) and (23) we obtain
l<j,<n+3.
We introduce the sets (=0, 1, ..., 2n)

Bi,":=< oy L 2 —a>,
2n+1 2n/win) 2n 2n+1

2nj 2nj 1 >
k] + -
2n+1 2n+1 2n \/w(n)

C"":=[

(23)

Let f/(x) (j=jgy,...2n) be 2z-periodic function defined by the

following equality (cf. (27))
. 1 for xeC!
N yv) = n ‘
AR %0 for xe[0,20\C'.
It is easy to see that for n> n, we have (cf. (17), (24)-(28))

supp f/(x) nsupp f1(x) = for jo<p#q<2n

B ABY=¢ for jo<p#gq<2n,
B/ =(0,2n) for j,<j<2n,
C< (0, 2n) for jo<j<2n
Consider the set (cf. (26) and (24))
B, = Ej B
J=Jo

Then from (33), (26), (30), (25), (17) we have (n>n,)

1 1 1
(B, = (2n— +1)<~_m>>-.
0 2n 20 /win)/ 4

(28)

(29)
(30)
(31)
(32)

(33)

(34)



414 R. GETSADZE

We shall show that if xe B! for some iy, j, < iy < 2n, then

1 /win)

lF’j((mi(‘r ' X (35)
87z n
Indeed (cf. (2), (28)) we have
. 1
Fufix)=g=-[ - X(u—x)du (36)
27 (T“

Further we note that when ue C'/® and xe B[ (cf. (26), (27)), then
u—xe{a, at+1/2n) (37)
According to Lemma 2 (cf, (13), (15)} we have
X ()] > Iwin) for ye(a a+1/2n), (38)

and, consequently, the function X,(y) preserves its sign on the interval
(a, 2 + 1/2n) as a real, continuous function. This means that (cf. (36)-(38), (27))

) 1
’an‘n"))(x)l ="

2n
S |
27 2

1 \/w(n)

87 n

f X (14— x) du
ot

() ﬂCMH

I\).—-

Now (35) is proved.
We introduce the function (cf (28), (24))

S(x)=3 ri1) f/(x), xe[0, 2n), te(0, 1), (39)
i=Jo
where {r,(¢)}7~ . are the Rademacher functions.
The followmg easily verifiable fact is well known (cf, for example,
{1, p. 10]): Let 327 | a,;r;(t) be an arbitrary polynomial in the Rademacher
system and i, be a fixed natural number, 1 </, <m. Then

,u{te(() Dagr(ty- Y ajrj(I)ZO}Zé- (40)

J=Yji#i

Let (cf. (33), (39))

|

A

)
0= {(rt)eBxOl ) 5 } (a1)

=
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Then according to (41), (33), (35), and (40), we conclude that for all xe B,
we have the inequality

1
[ xgtx ez,
0

where X, is the characteristic function of the set Q.
Therefore (cf. (34))

f J’XQ(x N)diz4-uB, >4t

Consequently, by Fubini’s theorem there exists a number 7,€(0, 1) such
that

J. Xo(x, 1) dx 2 §. (42)
B

n

Relation (42) means that (cf. (41))

 w(n)
H %xeB,,: |F, @ (x)] >—1-—- }21 (43)
] 87 n 8
Let
1 w( ) 28
A":z{xeB,,: lF,,d>ﬁ,’“‘(x)]>§7;- } U cin (44)
Then 1t is clear that (cf. (43), (44}, (27), (17)) for n>n,
» 1 n+1 1
,,/ (C) = —— — (45)
,ZU'L & 2n \/n(n 16
and (cf. (16))
A"CE”' (46)
According to (39), (16), (27), (28) we have
Pi(xy=0 (xeE) (47)
and (cf. (44))
wi{n)
|F,®@!"(x l>—l—-\/ {(ved,) (48)

87 n
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Introduce the sets (j= j,, ..., 21)

) 2nj ]
Q:',/) = nJ . 2mj 1 5),) (49)
n

+ & +
1 2n /win)

n i .
K(_ib::{_‘f%,_ﬂ+(§’,‘z}, (50)

" 1 P 2nj + i }
2n+1 2y \/w(n) " 2n+1 2n J/win) '
2nj 1 2r(j+ l))

+ ,
2n + 1 n /‘1'(;1) 2n + 1

where

]
64n- \/w(n)

Now we define the piecewise linear function g,e C,, by the following
equality (cf. (49)-(52))

@' (x) for xe U Q)
i=i
x):i= 2nj 2 , 54
&) 0 for xe| 0,222 u( U R,‘lf’), %)
- 2n+1 =
linear on K'”and 0\ (= Jo» - 20).
It 1s obvious that (cf. (54), (28), (29). (39))
lg. <1 (55)

and (cf. (2), (48), (25), (28), (39), (54), (50), (51), (53), (15)) for xe A,

|F, 8. X)| = |F, @, (x)| = |F,(@,°(x) — g,{x))]

> , | X, (x —u)| du
8 n LARIVEINT VY, 2
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According to (54), (27), (16), and (49)-(51)
g.(x)=0 {(xeE,). (57)

Then we find a real-valued trigonometric polynomial P,(x) such that

1 1
n_Pn r< i ’ w(n)/ 58
J]g “ min <n.w(n) 16n \/\1’(’1)) ( )

Taking account of (58), (55), (56), (15), (17), and (57) we obtain for
n>n,

1Pl <2, (59)
1 w(n)
‘ann(x)l>ﬂ' n (XGA,,) (60)
1
P < (xeE,) (61)

Consequently (cf. (17), (59)-(61), (45), (46), (18)-(22)), Lemma 3 is
proved.

Now we begin with the proof of the theorem. By induction we define a
sequence of natural numbers {#,} 7_, increasing at infinity. Let n; =n,+ 1,
where n, is the number appearing in Lemma 2.

Now let the numbers n,, n,, ..., n, _,; be already defined. Consider the
function (cf. (15))

Py(x 4 3, (62)

k1
1 - y r —_—
:x‘k)('\»}'lﬂ“")kfl)_ Z 4
Jj=1

w(n;)
where xeR, y,eR, j=12.,k—1, and P, , j=12,..k—1, are the
polynomials appearing in Lemma 3.

For any fixed real numbers y;, j=1,2,..,k—1, for ai"" as for the
function of x we have (cf. (2), {62))

nk—1 1 |t
HFna‘kl)'—:l;‘»Hurz H Z ( ) Fn(Pn( -+ yj))(x)_Pn,(X‘*‘ }‘_,')
, ",'

Jj=1 ,4/ W

k—1 1

Lo

: ”Fupnj(x)—Pn,(x)Hr'
j=1 N winy)
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Note that for any j, j=1,2,..,k—1, the polynomial P, (x) may be
written in the form

"

P ix)= 3% a,e™ (j=12,.. k=1

”
m= —m;

Consequently, for n>m, (cf. (4), (6)), j=1,2,.., k-1,

m; ) m; '
HFnPnJ(X)'_Pn,(X)”( = ” Z ampm,nelmx_ Z ametmx H '
”; 1 1
S Z Iam[ Om (;) = Oj <;>

m= —m,

From the last inequality we conclude that when n>max{m,, j=1,2, .,
k—1}

<l 1\ M,
Fal — il < 0= )g—2 63
“ n% i ”( jgl \‘yw(n[) j<n> n ( )

and (cf. (4)) analogously
[T, — oyl < My /n (64)

forally,eR,j=1,2,.,k—1, where M, is a positive constant independent
ofnand y, j=1,2,.., k-1

Now we define the index n, with n,>n, ,, n,>max{m,, j=1, ..
k —1} such that the inequalities (cf. (10), (15}, (63))

1 1 ]
w(n,\)gﬁ.w(n;\ 0) (63)
41 L 1 , (66)

nJolny 2 n, oln, )
4
My Yo (67)
ny kn,

4 J :
wln, ) < wln, 1), (68)

4(1)()1,\,) k nl\*l

4 Yorn, _
<\/(( k1) (69)

\4/w(nk)\ k'nl\’fl
hold.
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Thus we have obtained an infinite increasing sequence of indices
T i

Now we use the theorem of N. Kirchoff and R. J. Nessel (cf. (8)). Instead
of the set H, we take 2z-periodic extension A} of the set A, from the

Lemma 3 corresponding to the number n;. As a set D, we take the set

20tk 2nj 1 2n(j+1 1
Dk:=U< 2 TR ) (70)
oo \2n,+ 1 2n-Jwln) 2nm+1 0 2, \ﬂu(nk)

We see (cf. (70), (10), (15))

2 1
pokz(znkﬂ).( t )

2)‘1,\, +1 hn,\. »\/(U(nk‘)

=2n—o(1) (k— ).

Consequently, for all re(0, 2x) (cf. (20), (70))

= D (A —t)) & yi—oll)

2= =+
.r\-g) u Dy 2n

k=1

and thus, condition (8) holds. From the theorem of N. Kirchoff and R. I.
Nessel we conclude that there exist points y” e D,, k=1, 2, .., such that
the set

*_‘,40)) (71)

71k ES

A :=lim sup (A4

A -r

is a set of full measure.
We introduce the functions (A =1, 2, ...}

Pu(x) =P, (x+ 1) (xe R). (72)
Now we shall show that for all x=1,2, ..., and j=0, 1, .., 2, we have
2nj
+y e EX, 73
1 e ST L

where E¥ is 2m-periodic extension of the set E, (cf. (16)).

Indeed, »\"'e D, means that (cf. (70)) for some j,, 0 < j, <2n, one has

2nj, <‘,t_u;<2”(jl+l) 1

1
+ ] _ .
2n, Sw(n,)y 2n,+1 * 2n, + 1 2n, Jwln)
2 I3 & 3
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Consequently,

1 +2"(J‘f/_1_)< o, 2m) <27r(j+j,+1)

Sl 2+l 0 2+l 2m 41

Dividing the number j+ j, by 2n, + | we obtain

2n,

JHHh=2n+ 1) g +r, (0<r, <2ny),

where ¢, and r, are nonnegative integers. Therefore

2nr, 2nj
————=——=+2ng, + Eoyogy
2n, \/a)(izk) 21, + 1 2n,+1

27z(r,\,+l)*

1

<2rq, +
2n, + 1

The last inequality means that (cf. (16))

2nj

0)
v+
KT om 41

€E, +2nq, cE}.

Consequently (73) is proved.
From (73) it follows that (cf. (22), (72))

2nj 1
) < N =0, 1, .. 2n,,
v (bzk + 1) | mewin) 7 i

Consider the functions {cf. (72))

2n, \/w(nk).

(U("A-).

(74)

(75)

(76)
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[t is clear that (cf. (75), (76), (18), (65), (72})

z 1
<2 <+x (78)
j=1 4(0(nj)
1
Iyidle €4 —=———==. {79)
Ywin, )

Let xe A (cf. (71)). Then for infinitely many indices & we have
xeA¥ — yi. (80)
Fix any such &. We have (cf. (80))
x=a,+2n-I, -y  (LeZ aeA,). (81)
Therefore (cf. (72), (2), (81))
|F,, (X)) — @i x) = F, P, (a,) — P, (a)]

Hi et oy

Zgl cu(nk). (82)

My

According to (2), (75)-(77), (82), (67)-(69), (63), (62), (72), (17}, (10),
{15), and (79) we obtain

. - 1
iF,,k/(x)_j{,\')'> 4 ‘Fnk(ﬂk(—")—¢k(—\')‘
o w(ig)

- iF”kak(.\‘) _—mk(x” - IFnkyl\'(»\‘” - b'l\(x)(
S 1 C, «/a)(nk)_\‘yw(nk)
" Holn,) ny kony

=)y e— Tyl
¢, Yo  Joln,) 4 4
2 - —wln) -~ —=
n k-ng \/w(nkﬂ) \/w(nkﬂ}

=2Cy-

k'nk (k“f‘l)'”k (k+l)nk

v, : 1 1 {
_‘/(u(n,\).<Cl___ B >

T on, k k+1 k+1

k
\‘yw(nk) \‘Vw(n,\.) jw(nk) Yw(ny)
",

= = (C,—o(1)) (k— o0). (83)
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From (1), (75)-(77), (3), (10), (15), (72), (63). (74), (72), (67), {81), (19),
(22), (79), (68), and (69) one has

1
IT,, f(x)— fl(x)] Sm'(lnk(ﬂk(k‘)l + l@u(x)])
.

+ |Tm\a‘k(x) —_ak(x)l + ‘Tm,yk(x)‘ + ‘YI\(XH

1 w(n,) 2% 2nj
S\ym(%i:)l -EO i <2nkil> +ank(x+y‘A.°‘>
4/
+—7;)‘%Q+ alng) -yl + 17l
s—-L—.<l+ 1 >+:‘/w<nu
\‘yw(nk) n, n.-wlng) k-n,
+win,)- 4 + 4
yw(nk+l) {Vw(nku)

< L + ! + Vo)
\n,\».“/a)(nk) npw(ng) - Jolng)  k-n,
Ywln,) . \‘yw(nk)

(k+Dn, (k+1)-n,

_elm) /1 1 L2 >
- s kK k+1

g w(n,) wing) Yoln,)
4

Y ) k) (84)
Ny

Consequently (cf. (71), (78), (9), (83), and (84)) the theorem is proved.
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