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This paper is devoted to the solution of a problem of N. Kirchoff and R. J. Nessel
on the existence of a function f E C," such that

I
. 1F.J(x) - f(x)1
1m sup. + (fj

n~' IT,,j(x) - [(xli

for almost all ~ E R, where Fn is the trigonometric convolution operator and Tn is
its discrete analogue. '1995 Academic Press. Inc.

Let C2" be the Banach space of functions f, 2n-periodic and continuous
on the real axis R, endowed with the usual sup-norm Ilflle:= sup{ If( u)l:
IIER}.

For an even polynomial kernel of degree n, n E N (set of natural num
bers), given by

II

XII(X):= L
k= 11

(I)

with P k.1I = Pk,ll' PO.II = I, and for f E C2" let the trigonometric convolution
operator be defined by

I .2"
F,,!(x) := 2n t f(lI) XII(x - u) dll

and its discrete analogue by (ui .1I = 2nj/2n + I, O::s; j::S; 2n)

I 211

T,J(x) :=--. I f(ll/.,,) X,,(X-U;.,,).
2n+ I /~()

(2)

(3)
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For hk(x):= eib
, k EZ (set of integers), one has

(Ikl ~n). (4)

For the relations between operators F" and T" see [3, 4].
From the results ofN. Kirchotfand R. 1. Nessel (cf. [2, p. 35J) it follows

that if

and

1... 2 7£

IIX"II 1:= J
o

IX,,(u)1 du = O( I) (n->ef]) (5)

I - Pr." = OJ (~). n (j E N, n -> oc ), (6)

then there exists a counterexample f~ E C2" such that

I
. IT,J;lx) -.fc)(x)1
1m sup . . = +oc
/I' f IF"foC') -fo(x)1

(7)

for almost every x E R.
In the proof of this result use is made of the following extension of

Calderon's lemma (cf. [5, p, 165 J).

THEOREM (N. Kirchoff and R. 1. Nessel [2, p. 30J). Let H b D k c R be
(Lebesgue) measurable subsets such that Hk is 2n-periodic and Dk belongs
to [0, 2n J with Lebesgue measure /I( Dk ) =1= O/or each kEN. Suppose that

(n->oc). (8)

Then there exist points Yk E D k such that lim sup k _+ X. (Hk - }'k) :=
n'~~l U:~,,(Hk-Yk) is a set ofjidl measure.

In [2, p. 38 J is posed the problem on the existence (under the conditions
(5) and (6)) of a counterexample / E C2" such that

I
, IF"f(x) - /(x)1
1m sup. = + oc

" • x. IT,J(x) - /(x)1

for almost every x E R.
The present paper is devoted to the solution of this problem. Namely, we

shall prove the following
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THEOREM. Let (5) and (6) hold. Then there exists a (real-valued)
counterexample fEe2n such that

1
. IFnf(x) - f(x)1
1m sup = + IX

n ~x ITnf(x) -f(x)1

for almost every x E R.

First we shall prove a number of lemmas.

LEMMA 1. Let (5) and (6) hold. Then

lim IIX"II, = + x.

Proof It is clear that (cf. (1))

~2rr n

liX"II~:=J X;,(uldu=1+2 L pL·
o k~l

Then from (6) we have

lim \IXI/II~=+IX.
f1- x

But according to (5) we obtain

Now taking account of ( 11 ) we conclude that Lemma 1 is proved.

(9)

(10)

(11 )

LEMMA 2. Let (5 land (6 l hold. Then for any n E N there exists a number
x E [0, 277:) such that

and for any u E (x,x + 1/2n) one has

IXI/(ull >! IIXI/II,·

Proof Let XoE [0, 277:) be a point such that

(12)

(13 )

(14)
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Without loss of generality we may assume that X..(x o ) > 0. According to
the theorems of Lagrange and Bernstein, if Ihl E (0, 1/2n), then there exists
a number ~ E (0, Ihl) such that

IX,,(xo+ h) - X,,(xo)1 = IX:,(~)I'lhl ~ IIX:,II, ·Ihl

~ n IIX"II, ·Ihl ~! IIX"IIc·

Consequently, if Ihl E (0, 1/2n), then (cf. (14))

It is obvious that either xo +l/2nE[0,2n) or x o -I/2nE[O,2n) and
thus Lemma 2 is proved.

For convenience we shall use a notation

w(n):= [IX"II"

We introduce the sets (n > no)

n = 1, 2, .... ( 15)

2" ( 2nj 1 2n(j + 1))
E,,= U --+ j' ,

j ~ 0 2n + 1 2n w( n ) 2n + 1

where no>2 is chosen such that (cf. (10), (15))

(16)

win) > (64n)2 (n >no). (17)

LEMMA 3. Let (5) and (6) hold. Then for any n ;:: flo there exist a real
valued trigonometric polynomial P,,( x) and a set A" C [0, 2n] such that
(ci (2), (15), (16))

iIP"t~2,

A"cE",

flA,,;:: Yl'

CI~
/F"P,,(x) - P,,(x)! ;::--

n

and

(18 )

(19)

(20)

(21 )

1
IP,,(x)! ~-(-)

nw n

where no, C" and YI are positive constants.

(xEE,,), (22)
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Proof Without loss of generality we may assume that the number ex.
from Lemma 2 satisfies the condition

°< IX < n.

Let jo be an integer such that

2n(jo - 2) 2n(jo - I)
----,----IX ~°< - ex.

2n+ I 2n + I

Taking account of (24) and (23) we obtain

1< jo < 11+ 3.

We introduce the sets (j=O, 1, ...,211)

(23)

(24)

(25)

I .) (2nj I I 2nj )
B,/ := 2n+ I +2n~-ex- 2n' 2n+ I-ex, (26)

I .) l 2nj 2nj 1)
e ll':= 2n+I'2n+l+2nJw(n)' (27)

Let f;,j)(x) (j = jo, ... , 211) be 2n-periodic function defined by the
following equality (cf. (27))

{
I

f li)(x) =
• 11 °

for XE C;;ii

for XE [0, 2n)\C;/I .
(28)

It is easy to see that for n > no we have (cf. (17), (24 )-(28))

supp !~.")(x) n supp !;'!)(x) = 0 for jo ~ P i' q ~ 2n, (29)

B:t i n B;,q) = rjJ for Jo ~ p i' q ~ 2n, (30)

B;/i c [0, 2n) for Jo ~ J~ 2n, (31 )

C~,jic [0, 2n) for /0 ~ J~ 2n. (32)

Consider the set (cf. (26) and (24))

211

B,,:= U
j= .io

Then from (33), (26), (30), (25), (17) we have (n>l1o)

(I 1) If.1Bll =(2n-Jo+l) -- ~-.
2n 2n~ 4

(33)

(34)
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We shall show that if x E B~/"J for some io, io::S; io::S; 2n, then

1 Jw(n)
IFnf;/"I(x)I>8n'-n-' (35)

Indeed (cf. (2), (28)) we have

FII/:/IIJ(X)=~21·f. X,,(u-x)du.
7C (";,'Ol

(36)

Further we note that when UEC::" 1 and xEB~") (cf. (26), (27)), then

U - X E (rx, rx + I /2n ).

According to Lemma 2 (cf. (13), (15)) we have

(37)

jX,,(y)! > ~w(n) for y E (:x,:x + 1/2n), (38)

and, consequently, the function X,,( y) preserves its sign on the interval
(rx,:x + 1/2n) as a real, continuous function. This means that (cf. (36)-(38), (27))

IFnf;:"I(X)1 =~ If .X,,(u-x) dul
2n C;/O)

I I (. 1> - . - w( n) . f1 C III

277: 2 "

I Jw(n)
=-.-_.

8n n

Now (35) is proved.
We introduce the function (cf. (28), (24))

2n

cP~tI(x) = L fl(t) /;/I(X),
;= jo

xE[0,2n), t E (0, I), (39)

(40)

where {I) t)} ]: jll are the Rademacher functions.
The following easily verifiable fact is well known (cf., for example,

[1, p. 10J): Let I;:" I ujrj(t) be an arbitrary polynomial in the Rademacher
system and io be a fixed natural number, 1::s; io ::s; m. Then

f1{tE(O,I):u ill r ill(t)· f ujrj(t)?o}?!.
j=l,j"ill

Let (cf. (33), (39))

{
1 J~n)}

Q= (x,t)EB"x(O, 1):/FncP~tI(x)I>8~'-n- . (41)
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Then according to (41 ), (33), (35), and (40), we conclude that for all x E Bn

we have the inequality

where X Q is the characteristic function of the set Q.
Therefore (cf. (34))

Consequently, by Fubini's theorem there exists a number to E (0, 1) such
that

Relation (42) means that (cf. (41))

{
1 ~} 1

jJ .xEBn : IF"rp:i"I(X)! >-.-- ?-.
8n 11 8

Let

Then it is clear that (cf. (43), (44), (27), (17)) for 11 > 11 0

1 2" 1 211 + 1 1
IIA >:--" 'ICI/1=-- . >-
r ,,""" 8 L.." "8 I /'" 16

j-O 2I1VW(I1)

and (cf. (16))

According to (39), ( 16), (27), (28) we have

(42)

(43)

(44)

(45)

(46)

and (cf. (44))

(xEE,,) (47)

I ~w(ll)
IF rpltlll(\')1 >-.--

" ,,' 8n 11
(xEA,,). (48)
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Introduce the sets (J = }o, ... , 2n)

iii. (2n) ,2n} 1 , )
Q" .= -.,--1 + is", -2--1 + 1:::1::\ - is,, ,

~n + n + 2n v w( n)

Ku):=f 2rr..L-, 2n} +is;,l,
" l2n+12n+l J

l 2n' 1 2n' 1 JQUJ.= __J_+ -t __J_+_---==
". 2n+l 2njw(n) )'''2n+l 2n~'

loJl._( 2n} 1 2Jr(J+l))
R" .- 2 1 + 1:::1::\' ') 1 'n + 2n v w( n ) ~n +

where

,< 1
ti,,:= .

64n 1 jw(n)

(49)

(50)

(51 )

(52)

(53)

Now we define the piecewise linear function g" E ell< by the following
equality (cf (49)-(52))

211

1J;,'oJ(x) for XE U QUI" ,
;=)0

g,,(x) := l 2' J (0" ) (54)

° for
. nJo - I)

.\ E .0, 2n + 1 U i~j\\ R" 0 '

linear on K ;,i) and Q~/I (j = }o, ..., 2n).

It is obvious that (cf (54), (28), (29), (39))

Ilg"li,~ 1 (55)

and (cf. (2), (48), (25), (28), (39), (54), (50), (51), (53), (15») for xEA"

IF"g,,(x)j ~ 'F,,1J;,t\\)(x)I-IF,,(1J~t\\)(x)- g,,(x»1

1 ~ 1 f~-.----. 0 0 jX,,(x-lI)! du
8n n n u}: /\\ (K~H u (!,/'

1 ~ 1
~-.--- - w(n) . 46"" . n

8n n n

1 jw(n)
~-.--.

16n n
(56)
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According to (54), (27), (16), and (49)-(51)

417

(57)

Then we find a real-valued trigonometric polynomial P ,,( x) such that

l)g"-P,,llc~min(_1_), ~.).
n· w(n 16n w(n)

(58)

Taking account of (58), (55), (56), (15), (17), and (57) we obtain for
n >no

IIP"lIc~2,

1 ~
IF"P,,(x)1 > 32n: '-n-

1
IP,,(x)! ~ --(-)

n· \\1 n

(xEA,,)

(x E E,.).

(59)

(60)

(61)

Consequently (cf. (17), (59H6I), (45), (46), (18)-(22)), Lemma 3 is
proved.

Now we begin with the proof of the theorem. By induction we define a
sequence of natural numbers {nk};~ J increasing at infinity. Let n J = no + I,
where no is the number appearing in Lemma 2.

Now let the numbers n l' liz, ... , nk _ I be already defined. Consider the
function (cf. (15))

(62)

where x E R, Yj E R, J= 1, 2, ... , k - I, and P II;' J= I, 2, ... , k - I, are the
polynomials appearing in Lemma 3.

For any fixed real numbers )j, J=1,2, ...,k-l, for stil) as for the
function of x we have (cf. (2), (62))
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Note that for any j, j=I,2, ...,k-l, the polynomial Pn,(x) may be
written in the form

Pnj(X) = f ame,mx
m= -mj

(j = I, 2, ..., k - 1).

Consequently, for n > m j (cf. (4), (6)), j= I, 2, ..., k - 1,

m, (I) (1):( L laml Om -;; = OJ -;; .
,n= -m,

From the last inequality we conclude that when n > max{m j , j = I, 2, ... ,
k-l}

il J ( I ) k~ I 1 ( 1) M k
IIFn(lk -(lk 11,:( 1... 4/ ·OJ -;; :(-;;

J~ 1 v' w(nj )

and (cf. (4)) analogously

(63)

(64)

for all .vj E R, j = 1, 2, , k - 1, where M k is a positive constant independent
of nand .vj, j = 1, 2, , k - 1.

Now we define the index nk with nk > nk _ b nk > max {m j , j = I, ... ,
k - I} such that the inequalities (cf. (10), (15), (63))

hold.

I I I
--:(-.---
wind 16 w(nk_l)

I I I

nk .jw(nd ~2' nk_1 .jw(nk_I)'

Mk jw(nd
-~ ,
nk knk

4 jw(n k _ l )

w(nk_l) 4~~ k '
':/w(nk) ·nk-l

4 j~v(nk_d
-----=== ~ -'-----
jw(nk) k· nk_1

(65)

(66)

(67)

(68)

(69)
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Thus we have obtained an infinite increasing sequence of indices
{nd;~l'

Now we use the theorem of N. Kirchoff and R. J. Nessel (cf. (8 )). Instead
of the set Hk we take 2n-periodic extension A~k of the set A nk from the
Lemma 3 corresponding to the number nk . As a set D k we take the set

We see (ce (70). (10), (15))

(70)

= 2rr - o( 1) (k->Cfv).

Consequently, for all tE(O, 2rr) (cf. (20), (70))

and thus, condition (8) holds. From the theorem of N. Kirchoff and R. J.
Nessel we conclude that there exist points y~OI E Db k = 1, 2, ..., such that
the set

A := lim sup (A:
k

- y~(]I)
k -foX

is a set of ful1 measure.
We introduce the functions (k = 1.2.... )

(71 )

(xER). (72)

Now we shall show that for all k = 1.2..... and j = 0, I, ... , 211k we have

(73)

where E I~k is 2rr-periodic extension of the set E nk (cr. (16)).
Indeed. y~O)EDk means that (cf. (70)) for somej), O";;j, ,,;;2nk • one has
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I 2n(j+)I) 101 2n) 2n(j+)j+l) 1
2nk Jw(nd +-2-n-

k
+'< Yk +-2n-k~l- < 2nk + 1 - 2nk Jw(nd'

Dividing the number) +)1 by 2nk + I we obtain

where qk and r k are nonnegative integers. Therefore

2n(rk + I)
< 2nqk +--'-'--

2n k + I

The last inequality means that (cf. (16))

Consequently (73) is proved.
From (73) it follows that (cf. (22), (72))

)=0, I, ..., 2nk> k=1,2, .... (74)

Consider the functions (cf. (72))

(75)

(76)

(77)
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It is clear that (cc. (75), (76), (18), (65), (72))

1
l\fll,~2·.I ~< +CfJ

I ~ I w( nil

Let x E A (cf. (71)). Then for infinitely many indices k we have

Fix any such k. We have (cf. (80))

421

(78)

(79)

(80)

(81 )

Therefore (cf. (72), (2), (81))

IF"k !JJk(X) - !JJk(X)! = IF,,'p"k(ad - Pllk(adl

CI~
;;:, .

nk
(82)

According to (2), (75H77), (82), (67)-(69), (63), (62), (72), (17), (10),
( 15), and (79) we obtain

., I
IFlIk !(xj-.!(x)/;;:' 4~ IFlIk <fk(;rj-<fk(x)1

v w(ll k )

-IFlIk~k(X) -~k(x)I-IF",Yk(x)l- b'l)x)(

I C 1 JW(lld .y'w(lld
;;:, .----

y!w(nd nk k· Ilk

-wind· !1,-II,J'kII,

C 1 y!w(n k) .y'w(nd 4 4
;;:, - -wind '--:r===

Ilk k·nk y!w(nk+Jl y!w(l1k+d

.y'w(ll.) y!w(ll k) .y'w(llk ) y!w(nd
;;:,C!· - -----------

Ilk k . Ilk (k + 1) . Ilk (k + 1) . 11k

= ~.(C!-~--I---l-)
Ilk k k + I k + I

;y'W(lld
= . (C I - o( I )) (k -+ rx). (83 )

11 k
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From (1), (75)-(77), (3), (10), (15), (72), (63), (74), (72), (67), (81), (19),
(22), (79), (68), and (69) one has

I

Consequently (cf. (71), (78), (9), (83), and (84)) the theorem is proved.
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